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Finite element approximations to elliptic problems tend to converge poorly in the 
presence of singularities. This is especially true of spline functions. A scheme is given 
for efficiently modeling singularities in conjunction with such approximating functions. 
Three sample physical problems are chosen to illustrate the techniques. 

1. INTRODUCTION 

Over the past decade, “finite element” methods using piecewise polynomial 
approximating functions have solved many engineering problems with adequate 
accuracy, especially in the areas of solid and structural mechanics. However, if one 
wishes to achieve greater accuracy or if the exact solution involves even a mild 
“singularity,” such as is typically the case in domains with edges or corners, to use 
piecewise polynomial functions exclusively is very inefficient. 

One of us has recently1 explored the possibility of achieving greater accuracy 
by supplementing a basis of piecewise polynomial “finite elements” by appropriate 
“singular functions” so chosen as to match all the leading terms of the exact 
solution near singular points. The method yielded satisfactory results, but several 
computational questions remain unresolved, and we shall deal with these in this 
paper in terms of the following three physical models: (i) the accurate computation 
of the rigidity and deformation of a cracked square elastic beam under torsion; 
(ii) the very accurate computation of the eigenvalues of an L-shaped membrane; 
and (iii) the flux distribution in an idealized square nuclear reactor consisting of 
a homogeneous square core surrounded by a square reflector, in the one-group 
diffusion approximation. 

The first computational problem we consider concerns the most efficient class of 

* This work was supported in part by the A.E.C. under contract No. 7158-2. 
* See [lo] and [4]; also Wait and Mitchell [19]. 
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piecewise polynomial functions to use in combination with “singular functions.” 
More precisely, given an error tolerance E > 0, which approximating subspace 
gives this error with the least amount of work. This of course is a very broad 
question to which we can at best give only partial answers. The situation is further 
complicated by the various possible measures that can be used for computational 
work. In this paper we have chosen the number N of unknown parameters as our 
criterion. This is somewhat of an over simplification, but an entirely reasonable one 
for the type of finite element approximations discussed here. 

The first conclusion we have drawn from our experiments is that cubic elements 
are far more eficient than linear elements when singular functions are used. For 
example, in the torsion problem (Section 2) linear elements with singular functions 
give approximations having 5 % relative errors with 30-40 unknowns, while with 
the same number of unknowns the cubic elements yield errors of order. 1 % (see 
Table I in Section 2). 

In addition, we found that suitably modified splines to be the most eficient cubic 
element to use with singular functions. Each of the cubic elements (with singular 
functions) gave approximations with roughly the same errors for a given mesh size. 
The spline space, therefore, proved to be the most efficient, since it has least number 
of unknown parameters for a given mesh. For example, in torsion problems five 
place accuracy was obtained with the splines with 59 unknowns while the Hermite 
space required 132 unknowns, the mesh length being the same for both spaces 
(see Table I). 

Finally, each of the above schemes proved to be more eficient than local mesh 
re$nement with triangular elements. In the torsion problem, for example, local mesh 
refinement with linear elements gave relative errors of order 20 % near the singu- 
larity; with two singular functions the error was 5 % with 33 unknowns as noted 
above. 

The addition of singular functions to a finite element basis of course destroys the 
band structure of the matrix. In addition, the condition number is greatly increased. 
Nevertheless, in Section 5 it is shown how the bordering techniques of Faddeev 
and Faddeeva [9] can be used to avoid both problems. 

It should be noted that each of the three problems we have chosen have rectan- 
gular boundaries. Rectangular elements such as splines, however, are not confined 
to such configurations, and for example can be used for more general boundaries 
with Lagrange multipliers [26] or least-square techniques [27]. Another possibility 
is to use isoparametric splines near curvilinear boundaries [17]. We presume that 
the conclusion we have reached in this paper will not be drastically changed for 
such problems. 
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2. TORSION PROBLEMS 

Consider the torsion of the cracked beam with square cross-section IR shown in 
Fig. 1. The governing differential equation in terms of the stress function u is 

-Au = FinSZ, (2.1) 

24 = 0 on a52, (2.2) 

where asZ denotes the boundary of B and F is a constant. O3 
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FIG. I. Cracked square. 

The solution ZJ has a singularity at P with leading term r1/2 sin O/2, where (r, 0) 
are polar coordinates. More precisely, it follows from Lehman’s Theorem [2] that 

U - f Cjr” sin vje, 
j=o 

vj = (2j + 1)/Z, (2.3) 

is analytic in a neighborhood of P for suitable constants cj.’ Indeed, (2.3) is analytic 
everywhere in the closure 0 of Q except for the corners PI ,..., P5 at which it also 
has singularities of the form pp In pc , pi being the distance from Pi . 

From an engineering standpoint, the most interesting quantity is not the values 
of the stress function u but rather the constant (called the stress intensity factor) 

cro = lj% r-1/2[u(r, 7r) - ~(0, 7r)], (2.4) 

since it is a commonly accepted measure of the amount of torsion the beam can 
endure before fracture occurs [13]. 

a A more general treatment is given by Kondrat’ev [28]. This work is of central importance 
since in it is developed the form of the singularity for a rather wide class of elliptic problems. 

s8rl+-4 
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To avoid the physically uninteresting logarithmic singularities we change the 
problem slightly and replace (2.2) with 

u=O on T,m,andP,P,, 

au __ __ 
- = 0 on P,P, , P3P4, and P,P, , an 

(2.2’) 

(2.2”) 

where a/an is the normal derivative. Such a change of boundary conditions is 
typically justified in the engineering literature by the Sam-Venant principle [13]-- 
the behavior of the stress function near P is not affected by boundary conditions 
away from P. Moreover, it follows from the results in [22], that the solution u to 
(2.1), (2.2’), 2.2”) has a singularity only only at P which is of the form (2.3). For 
simplicity we take F = 1, and appeal to symmetry to reduce the problem to the 
rectangle shown in Fig. 2. 

Y 

p, =(-l/2,01 P-(0,0) 02 --(l/2,0) 
I : x 

u=o ” =o 
I Y 
I 
8 

u,=o I ux =o 
I 

P* =(-l/2,-1/2) 

I 
1 u=o 

0, =(0,-l/2) P3 =( l/2 ,-i/2) 

FIG. 2. Symmetrized region. 

Four different types of finite elements will be considered. The first three arise 
from a partition of the region into subsquares with side length h and are as follows: 

(i) ShL denotes the space of continuous functions which are bilinear poly- 
nomials a + bx + cy + dxy in each subsquare of L?, The unknowns are the values 
of the solution at the nodal points, and, hence, the dimension of this space is 

dim ShL = h-z + O(/+). (2.5) 

(ii) ShH is the bicubic Hermite space consisting of C1 functions which are 
bicubic polynomials xi=, c:=0 aiix”yi in each subcube. There are four unknowns 
per interior point (the values of U, U, , U, , uzJ), hence the dimension of this space is 

dim ShH = 4/Y + O(h-I). (2.6) 
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(iii) SiL (called the spline-Lagrange space below) is the space consisting of 
piecewise bicubic polynomials of class C2 everywhere except across the line PQ1 , 
where they are only continuous. The dimension of this space is 

dim S,“” = r2 + 0(/P). (2.7) 

The reason for assuming only continuity along the vertical line intersecting P is 
related to the boundary condition (2.2’). In particular, this condition is essential [24] 
and must be satisfied by all trial functions in the approximating space. It is impos- 
sible for a smooth piecewise polynomial function, and in particular a C2 bicubic 
spline function, to vanish along the line D and be nonzero in the region exterior 
to this line. The solution u does this, but its derivatives have singularities at P. To 
avoid this difficulty, we weaken the smoothness requirements along m , requiring 
only continuity here. A patch basis3 of the form 

for Sf” is easily constructed using the divided difference formulas for the one 
dimensional B-splines &(t) of Schoenberg [7] (see also [17]). 

(iv) Sk,, denotes the space of continuous functions which are piecewise linear 
in a triangulated subdivision of G (see Fig. 3), h signifying the maximum side length 
and 6 the minimum side length. 

FIG. 3. Triangulation of B. 

To the patch basis for each of the spaces ShL, ShH, SiL we shall add singular 
functions of the form 

&(r, 8) = r”’ sin v,B for 0 < I < ro, 0 < e < 2n, 
= p(r) sin v,B for r. < r < rl , 0 < 0 < 27r, (2.8) 
=o for r > rl , 

* A patch basis consists of functions &(x, y) which are locally supported; i.e., the area of 
region outside which #s is identically zero approaches zero as the maximum mesh length goes 
to zero. It is crucial to use such a basis in computations since they lead to sparse matrices. 
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where vI = (21 + 1)/2 and p(r) is a polynomial so chosen that zjl is of class C4 or 
C2 away from the point P depending on whether bicubic or bilinear elements are 
used. An alternate choice for this particular problem is to define #, on all of 52, 
for example, 

$z(r, 6) = [l - 4y2] ryL sin ~0. (2.9) 

We found that (2.9) and (2.8) with r. = l/4, rl = l/3 gave substantially the same 
results. 

For the spaces of piecewise bicubic functions ShH, SfL we use &, 0 < 1 < 3, 
since by Lehman’s Theorem there are constants cz , 0 < 2 < 3, such that 
u - &, c& is of class C4 and, hence can be approximated to fourth order by 

TABLE I 

Values of Approximate Solution 

Space Dimension (h) R, = (0, -l/24) R, = (-11/24, -l/4) Rs = (11/24, -l/4) 
0.027425 0.032877 0.070844 

s&P= h 

SShH 

S&L 

Sk.8 

P b 

SF 

ShL 

40 U/6) 0.027438 0.032887 0.070835 

59 (l/8) 0.027429 0.032881 0.070847 
109 (l/12) 0.027426 0.032877 0.070844 

36 (114) 0.027402 0.032859 0.070895 
132 (l/S) 0.021423 0.032876 0.070848 
204 (l/10) 0.027424 0.032877 0.070844 

33 (l/8) 0.026459 0.033025 0.070385 
129 (I/16) 0.027153 0.032917 0.070721 
201 (l/30) 0.027289 0.032903 0.070780 

7(h = l/4,8 = l/4) 0.006443 
15 (h = l/4, S = l/16) 0.017311 
32(h = l/6, 6 = l/6) 0.009681 
58 (h = l/6,6 = l/24) 0.022079 

0.032483 0.065258 
0.032696 0.068523 

36 (l/6) 0.020982 0.032643 0.069667 

55 (l/8) 0.022704 0.032712 0.069993 
105 (l/12) 0.024693 0.032771 0.070273 

30 (l/4) 0.015593 0.032335 0.066730 
128 (l/S) 0.019681 0.032580 0.068872 
200 (l/10) 0.020980 0.032636 0.069275 

7 (l/4) 0.007423 

31 (l/8) 0.013700 
127 (l/16) 0.020686 
199 (l/20) 0.023306 

0.032521 0.065258 
0.032718 0.068174 
0.032747 0.068523 
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bicubic elements [6, 71. To use fewer functions would reduce the order to which 
the solution u can be approximated in the respective spaces. Similarly, we use $1 , 
0 < 1 < 1, with the bilinear elements. To distinguish the spaces with and without 
singular functions, we shall let SShL, SShH, and SSk denote the former. 

No analytic expression for the exact solution of (2.1), (2.23, (2.2”) is known, so 
to measure the accuracy in the linear and cubic elements we used even higher order 
elements. More precisely, we used a quintic spline-Lagrange element with six 
singular functions. The actual numbers computed with this space were very 
accurate; the maximum difference between the values at h = l/6, l/8, and l/10 
differed only in the seventh place. We, therefore, used the first six figures as the value 
of the exact solution. 

Table I gives the values of the approximate solution at the points RI= (0, - l/24), 
R, = (- 11/24, - l/4), R, = (1 l/24, - l/4), and Table II gives the values of the 

TABLE II 

Approximate Values of Stress Intensity Factor o,, 

Space Dimension (h) 

SSSL A 40 (l/6) 0.1925 
59 (l/8) 0.1920 
109 (l/12) 0.1918 

SS,H 36 (114) 0.1902 
132 (l/8) 0.1915 
204 (l/10) 0.1916 

S&L 33 (l/8) 0.1830 
129 (l/16) 0.1867 
201 (l/20) 0.1877 

Sk3 7(/l = l/4,6 = l/4) 0.0773 
15 (h = l/4,6 = l/16) 0.1038 
17(h = l/6,8 = l/6) 0.0848 
SS(h = l/6,6 = l/24) 0.1072 

approximate stress intensity factor 0, h. The exact values are listed at the top of 
each column. Observe that the conclusions drawn in the introduction-namely 
that with singular functions cubic elements are superior to linear elements and 
both of these are superior to local mesh refinement-are readily contirmed from 
these tables. 

We included the approximations from the spaces SgL, Shw, ShL without singular 
functions to illustrate the drastic improvements that result from the addition of 
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singular functions. Note that for these approximations the errors are worse, as 
expected, near the singularity. However, there is serious “pollution” in the errors 
away from the singularity, for example, the approximation at R, has about 40 % 
accuracy with cubits and no singular functions; by adding four of the latter this 
error is reduced to about 1 %. 

3. THE L-SHAPED MEMBRANE 

Many attempts have been made to compute accurately the eigenvalues of an 
L-shaped membrane; see for example [2, p. 137; 10; 121. The most accurate eigen- 
values reported to date are those obtained using a collocation method by Fox, 
Henrici, and Moler [l I]. However, their techniques are hard to generalize to other 
regions, even to other rectangular polygons with more than one reentrant corner. 

In this section we shall present some new numerical results based on the 
Rayleigh-Ritz method with a space of modified splines with singular functions, 
like that used for the torsion problem in Section 2. The results are as accurate as 
those reported in [l 11, and much more accurate than those reported in [2, p. 137; 
lo] using spaces of bilinear and bicubic Hermite functions. 

The problem to be solved is 

du+hu =OinQ, 24 = 0 on aQ, (3.1) 

where Q is the L-shaped region shown in Fig. 4. To define the modified space of I 
Y 

I 

{ 
pI 

p3 
EFLI- 

P 
X 

P2 

L-shaped membrane 

FIGURE 4 

splines, which we shall call the spline-Hermite space and denote by SfH for reasons 
that will be apparent shortly, we subdivide D into squares of side h. Then S,“” 
consists of those functions which are bicubic polynomials in each square, and which - - 
are of class C2 in D except along the lines PPl and P-here they are Cl. 

The weaker smoothness conditions along the lines PP, and m were introduced 
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for the reasons cited in Section 2. However, we found that C1 continuity along 
these lines was sufficient for the L-shaped region; whereas, for cracked square 
discussed in Section 2 it was necessary to allow mere continuity. This is presumably 
due to the larger interior angle at the reentrant corner for the former case. 

Sample calculations for the L-shaped region show that this type of modification 
is crucial, since approximations obtained with pure splines (and singular functions) 
are considerably less accurate than those reported here! See also [20, pp. 4-171. In 
addition, the weaker smoothness conditions make the essential boundary condition 
[24] u = 0 on 8Q easier to satisfy. 

From Lehman’s Theorem [22] it follows that eigenfunctions u admit the 
development 

u(r, 0) = f f cklr2kJ3+2z sin(2k0/3) 
k=O Z=O 

near P, and we used singular functions of the form 

&(r, 0) = (1 - y2)(1 - x2) r21c/3+2z sin(2k8/3) (3.3) 

defined over all of Q. To be consistent with the notation established in Section 2, 
we shall let SStH denote the space spanned by SiH and appropriate singular 
functions. 

For simplicity we have computed only the even symmetry class, i.e., the eigen- 
functions which are symmetric about the line PP, in Fig. 4. For this case, the 
expansion (3.2) simplifies to 

u(r, 0) = c 2 cklr2k13f21 sin(2k0/3), 
K=1,3,5,... z=o 

(3.2’) 

and to obtain optimal order of accuracy it is necessary (and sufficient) to use only 
*11 3 *12 9 and $50 . See [IO, Theorem l] which applies to this case. 

Table III lists our most accurate approximation values, together with those 
obtained by Fox, Henrici, and Moler [I 11. The integer n in this table stands for 
the nth eigenvalue A, ordered by A, < A, < ..a < X, < .a*. We have found that 
the best way to obtain very high accuracy was not by refining the mesh but by 
adding more singular functions, and the numbers given in Table III were calculated 
with 14 singular functions. This reduces the constant C in the eigenvalue error 
bound 

0 < Ah - X < Che 

(see [IO] and [23]). Indeed, the use of more than three singular functions cannot 
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TABLE III 
Approximate Eigenvalue of the L-Shaped Membrane Even Symmetric Class 

Eigenvalue Fox, Henrici, Moler 
number n upper and lower bounds 

Ritz upper bounds 
h = l/S, 14 singular functions 

1 9.6397238 
05 
84 9.6397 23844 - 

3 31.91263 
31 
88 31.9126 3607 - 

41.4745 
039 
159 

41.4745 2424 

6. 56.7096 
02 
18 

56.7096 6596 

7 - 71.0585 3953 
9 - 89.3062 4622 

TABLE IV 

n N, = 0 
h = l/4 

N, = 3 N, = 11 

1 10.263 45261 96 

2* 19.739 40065 32 

3 33.240 56446 13 

4 42.653 11016 15 

5* 49.387 23635 23 

9.639 73228 538 9.639 72387 301 

19.739 40065 32 19.739 40065 32 

31.917 63099 60 31.912 64025 76 

41.497 70734 33 41.475 02450 21 

49.387 23635 23 49.387 23635 23 

n N, = 0 
h = l/8 

N, = 11 NI = 14 

1 9.887 34798 535 9.639 72384 432 9.6397 2384409 - - 

2* 19.739 21136 66 19.739 21136 66 19.739211366 

3 32.481 62580 32 31.912 63607 34 31.912 63606 64 - 

4 41.928 52875 62 41.474 52865 46 41.4745 2424 21 - 

5* 49.348 42004 58 49.348 42004 58 49.348 42004 58 

n = eigenvalue number; N, = number of singular functions; * = eigenvalues of the square. 
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increase the exponent of h, which is best possible [23], but the effect on C can be 
rather significant. This is illustrated in Table IV. It is perhaps significant that 
this phenomenon would not be nearly so pronounced if we had defined the 
singular functions over a smaller subregion of Q, as in (2.8). 

Not all of the eigenfunctions of the L have singularities at the corner P. In 
particular, the eigenvalues of the square 

(m2 + n2) rr2 (3.4) 

are also eigenvalues of the L and have analytic eigenfunctions. Singular functions 
are therefore not needed to approximate the latter. Refering to Table IV, we note 
that the second and Iifth eigenvalues are of the form (3.4); the exact value of X, is 
2~~ and the exact value of &, is 57r2. As expected the addition of singular functions 
do not change the approximations. In fact, the lack of any significant change 
confirms the stability of the numerical procedures discussed in Section 5. 

Of course, efficiency with moderate accuracy is usually much more important 
than such extreme accuracy in engineering problems. With this in mind we turn 
to Table V where the approximations with three singular functions are given. 

TABLE V 

Three Singular Functions 

n h = l/4 h = l/6 

1 9.639 13228 538 

2* 19.739 40065 32 

3 31.917 63099 60 

4 41.497 70734 33 

9.639 12449 886 

19.739 22390 70 

31.912 99290 71 

41.476 04137 86 

6 56.744 45703 31 

7 71.410 76701 53 

56.711 95591 59 

71.078 80615 32 

* = eigenvalues of the square. 

Observe that even with the coarse mesh h = l/4, five places of accuracy are 
obtained, which is typically sufficient for engineering purposes. 

In Tables IV and V the digits which differ from the values listed in Table III 
are underlined. 
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4. ONE-GROUP, TWO-REGION REACTOR 

In therprevious-examples the introduction of auxiliary singular functions was 
essential to the success of the finite element method. In our final example, the 
boundaryiivalue problem associated with the one-group, two-region reactor, this 

TABLE VI 
Approximations to the first eigenvalue of (4.1) 

Bicubic spline-Lagrange space; no singular functions 

h Number of unknowns h 

114 64 5.5841818 
l/6 100 5.5833516 
118 144 5.5829692 

Bicubic spline-Lagrange space; one singular function 

l/4 65 5.5823256 
116 101 5.5822830 
l/8 145 5.5822736 

p1 = l,p, = 5, q = 0,p = 1, v = 0.784. 

does not appear to be the case. The solution u can be written cv + dw, where v is 
smooth and w has unbounded first derivatives at certain points. Fortunately the 
constant d is apparently small so that the error in the finite element approximation 
is quite acceptable (see Table VI) although the rate at which it converges to zero 
as the mesh is refined is quite slow. 

The boundary value problem associated with the one-group, two-region ractor is 

-V(p Vu) + qu = xpu. (4.1) 

% % 
Qa -Lp I--- 

4 P3 

El n a0 r- R a, ---, PI P2 --- IQ2 Q3i “, 
O5 

Q4 

FIG. 5. Reactor with core. 
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This differential equation holds in the core Q,, and the reflector Sz, (see Fig. 5), 
and we require that energy flux u vanish on the outer boundary aQn, : 

u = 0 on asz, . (4.2) 

Typically the coefficients p, q, and p are regionwise constants. Thus, the curve r 
separating Q,, and Qn, is an interface, and we require that U, p(au/&z) be continuous 
across I’, where iz is the normal to F 

(4.3) 

The most important quantity to calculate is the eigenvalue of least magnitude X 
which measures the criticality of the reactor [14]. 

Independent of any singularity the existence of interfaces fundamentally alters 
the best choice of an appropriate finite element space Sh. To use spaces of piecewise 
polynomial functions which are Cl or better across r would clearly lead to poor 
approximations, since u has discontinuous derivatives across r. The use of trial 
functions satisfying the jump condition (4.3) as proposed in [20] leads to difficulties 
at the corners Pj ,j = 1,2, 3,4. For example, at the point Pl , if we force the trial 
functions oh@, y) to satisfy 

along PIP,, where 

aYh aoh 
po &- r- = p1 -& )-+ (4.4) 

P= 1 
p. in Do 
p1 in Sz,, 

then they will also satisfy (4.4) on a portion of QIPl where the solution is smooth. 
In light of the above considerations we decided to use a bicubic spline-Lagrange 

space for this problem. Before describing this space we first exploit the symmetry 
to reduce the region to the half square in Fig. 6, where a Neumann boundary 
condition au/an = 0 is used along -a and Rx. Subdividing the region 

R2 “i 
"I "0 

0, ---- ; 
P 

EEI 

R3 

Ql 
“I 

I a, 

RI 02 R4 

FIG. 6. Symmetrized region. 
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into squares with side lenth h, we let SfPL denote the space of functions which are 
bicubic polynomials in each subsquare and which are of class C2 except across -- -7 the lines Q,Q,’ and QzQz where they are only continuous. We do not require 
that the trial functions satisfy the interface condition (4.3), which is permissible 
since this is a natural boundary condition [ 121. 

The eigenfunction u associated with the first eigenvalue X has singular derivatives 
at the point PI in Fig. 6. Indeed, Birkhoff [3] and Kellogg [25] have shown that the 
leading term in the asymptotic expansion near P, has the form 

r”*v(@9 (4.5) 

where 0 < v < 1 and &(e) is a periodic function of 0. As was mentioned at the 
beginning of this section, however, the coefficient of (4.5) is quite small and does not 
appreciably affect the size of the error as we shall show in the following examples. 

The first case we consider is 

PO = 5, Pl = 1, 4 = 0, p = 1, (4.6) 

wherep =p,inSZ,andp =plinSZ,. For this choice of coefficients the value of 
v in (4.5) is 

v = 0.783653104. 

Thus [17], the error in the spline-Lagrange approximate eigenvalue is 

O(h2”) N O(h1.5s); (4.7) 

when one singular function is used this error is reduced to 

O(P+2v) N O(h5.ss). (4.8) 

The numerical results listed in Table VI confirm the rates (4.7) and (4.8), but observe 
that the approximations without singular functions are quite good even though 
their rate of convergence is slow. 
The second case we consider has a larger variation in the coefficient p: 

PO = 500, Pl = 1, 4 = 0, p = 1. (4.9) 

For this case 
v N 213, 

and as before the approximate eigenvalues have errors of order O(h2”), (O(h4+““)) 
when no (one) singular functions are used. The results are listed in Table VII, and 
are similar to those obtained in the first case. 
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TABLE VII 
Approximations to the First Eigenvalue of (4.1) 

Bicubic spline-Lagrange space; no singular functions 

h Number of unknowns h 

l/4 64 5.799411 
l/6 100 5.796708 
118 144 5.795361 

PI = I, po = 500, q = 0, p = 1, v z 213. 

Observe that the difference between the eigenvalues for (4.6) and (4.9) is about 
3 %; i.e., the first eigenvalue of (4.1) appears to depend very weakly on the value 
p,, of the coefficient p in the core Q, . Presumably the associated eigenfunction is 
almost constant in Q2,, a fact which partially explains the weak effects of the 
singularity. 

The eigenvalue, however, depends quite strongly on the value p1 of p in the 
reflector Q, . For example, if 

PO = 1, p1 = m 4 = 0, p = 1, (4.10) 

the value of h is increased fourfold. See Table VIII. 

TABLE VIII 
Approximations to the tirst eigenvalue of (4.1) 

Bicubic spline-Lagrange space; no singular functions 

h Number of unknowns A 

114 64 19.6798194 
l/6 100 19.6797314 
l/8 144 19.6797208 

p1 = 5OO,p, = 1, q = 0,p = 1, YE 4/3. 

One cannot expect a weak effect from singularities for all geometrical 
configurations. For example, consider the region Q shown in Fig. 7. For the choice 
of coefficients 

4 = 0, p=l 

PC% Jo = I;” 
if (x, Y) E Q. u 4, 
if (x, Y> E 0, u Qn,, 

(4.11) 
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FIGURE 7 

the approximate eigenvalues without singular functions is given in Table IX. 
Observe both size and rate of convergence of the error is very poor. Fortunately, 
such conjigurations rarely occur in reactors, the configuration given in Fig. 5 is the 
most typical. 

TABLE IX 
Approximations to the First Eigenvalue of (4.1) 

Bicubic spline-Lagrange space; no singular functions 

h Number of unknowns x 

114 64 38.27058 
116 loo 37.29292 
118 144 36.569080 

p is given by (4.1 l), q = 0, p = 1. 

5. SOLUTION OF APPROXIMATE EQUATIONS 

That the addition of extra functions to a finite element basis can lead to numerical 
instability is not too surprising. The extra singular functions can be approximated 
by the finite elements, and this is especially true of, for example, the higher-order 
singular functions like r712 sin(78/2) needed to obtain the full efficiency of the 
bicubic elements in the torsion problem. Thus, we have a “nearly dependent” 
(ill conditioned) basis for the space spanned by the finite elements and singular 
functions no matter what basis we use for the finite elements. 

An equally serious difficulty is that the addition of singular functions destroys 
the band structure of the matrices generated by the finite element method. This 
can lead to extra operations in elimination (“fillin”), as well as extra storage 
requirements. 
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A closer look at the type of sparsity structure of the matrices associated with the 
spaces SShL, SShH, and SStL employing singular functions shows, however, that 
both of the above difficulties can be resolved by using ideas of Faddeev and 
Faddeeva [9, pp. 163-1671 for handling bordered matrices. 

Let us first consider the source problem (2.1), where the variational method 
leads to a system of linear equations 

Au = f, 

whose coefficient matrix A has the form 

‘X x x 

x 
0 

X 

\ 

\ 
X 

0 
X 

x x x 

X X 

X X 

X 

X 1. x x 

x x 

(5.1) 

(5.2) 

In (5.2), A,, is the matrix that arises from the finite elements without singular 
functions; its entries are inner products of B-splines. It is, therefore, a banded 
positive definite N x N matrix, whose bandwidth is 0(/z-l) and whose dimension 
is N = O(P). The entries of the N, x N matrix A,, , N, denoting the number of 
singular functions, are inner products of the B-splines with the singular functions, 
while A,, is the N, x N, positive definite matrix whose entries are the inner 
products of the singular functions with each other. 

To solve (5.1), we use the Cholesky factorization 

where L,, and L,, are lower triangular matrices. The Cholesky factors are deter- 
mined from 

AI, = LJ: 3 (5.3) 

A,*, = L&i , (5.4) 

A,, - J&L,*, = L&t . (5.5) 

The first factorization (5.3) is the usual Cholesky factorization of the (finite element) 
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matrix A,, . We backsolve with L,, to obtain the row vectors of L,, from (5.4) and, 
finally, the factor Lzz is obtained by a Cholesky factorization of the N, x N, 
matrix A,, - L,,L,*8 . 

To compute the solution u we first use the partition 

“1 I N 
‘= u,}N,’ ( ) 

and then backsolve using the triangular factors 

LlVl = fl , 

L22v2 = f2 - Ll,Vl , 
(5.6) 

G&2 = v2 7 
(5.7) 

L&u, = VI - L&u,. 

First observe that it is necessary to store only the bands of A,, as well as A,, , 
Az2 , fi , and f, . Thus, the addition to the storage requirement, which is 0(h-3) 
without singular functions, is only of order O(/Z-~). The increase in the operation 
counts to solve (5.1) by (5.2)-(5.7) also makes a lower order contribution. Without 
singular functions, where (5.1) is replaced with A,,u, = fi , 0(h-4) operations 
are required. Moreover the extra operations required from (5.2)-(5.7) result only 
from the matrix multiplications in (5.4), the factorization (5.5) and the backsolves 
in (5.6) and (5.7). This increase is, therefore, only of order O(/Z-~). 

In addition, backsolving only involves the Cholesky factor Lll of the finite 
element matrix A,, , and the small N, x N, matrix L,, . (Recall that N, = 2 for 
linear elements and N, = 4 for cubic elements.) The latter is the only place where 
numerical instabilities occur, and since the matrices involved are so small, rounding 
errors can be easily kept under control. Observe that with a standard “black box” 
elimination code, row pivoting would occur, the effect of which would be to put 
part of A,*, into A,, -a disaster for stability! 

Similar techniques can be used for the associated eigenvalue problem Au = Mu, 
where B denotes the mass matrix. For example, in the Rayleigh quotient algorithm 
[21], which we have found to be the best scheme to solve for the first eigenvalue h 
and eigenvector u, iterations 

A,$t~+l) = jjW)B,$n), (5.8) 
h(n+l, = U("+l).AU(n+l)/U("+l).Bu(n+l, (5.9) 

are introduced. Thus, it is necessary only to factor A by (5.3~(5.5) at the beginning 
of the calculation, and backsolve at each step to obtain ufn+l) from II(~) using 
(5.6)-(5.7). 
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